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ABSTRACT 1 

Several methods have been proposed to disaggregate Freight Analysis Framework (FAF) commodity flows 2 

to zonal structures of greater geographical detail. This disaggregation is usually performed on the basis of 3 

explanatory variables related to the supply and demand of goods. In this paper a complementary procedure 4 

is presented to determine the mode splits of disaggregated FAF flows. A goal-programming approach is 5 

proposed to allocate FAF mode flow data on the basis of mode-related variables. The formulated goal-6 

programming problem minimizes the deviation between the mode flow decision variables and target mode 7 

flow values, subject to given FAF mode flow information. The use of mode split models is proposed to 8 

define the problem’s target values. In a sample application of the procedure a method to estimate aggregate 9 

mode split models with FAF data is discussed. These mode split models could be used by transportation 10 

organizations that do not have access to freight mode choice models to define the goal-programming 11 

problem’s target mode flow values. Additionally, an optimization problem is formulated to account for FAF 12 

mode flow data in the disaggregation of total commodity flows. Lastly, validation procedures for FAF 13 

disaggregation and mode allocation results are discussed, and an example of a validation approach is 14 

presented.  15 

 16 

Keywords: Freight Analysis Framework, disaggregation procedures, goal-programming problems, 17 

aggregate mode split models 18 
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INTRODUCTION 1 
  2 

Commodity-based freight transportation models attempt to capture the relationship between the supply and 3 

demand of goods by different economic sectors and the resulting generation of freight movements. Given 4 

its focus on the driving forces behind the demand for freight transportation, this modeling approach permits 5 

the analysis of sophisticated scenarios and policy questions of interest to metropolitan and state 6 

transportation organizations. Unfortunately, many transportation agencies do not have access to the 7 

commodity flow data necessary to develop these types of models, either because the data have not been 8 

collected, its purchase from third parties is prohibitively expensive, or the available data do not exist at the 9 

necessary level of geographic detail. In response to this data availability problem, methods have been 10 

developed to derive the commodity flows of interest from public data sources. The FHWA’s Freight 11 

Analysis Framework regional database (FAF) is one of such public data sources available to transportation 12 

analysts in the US (1).  13 

The latest version of the Freight Analysis Framework, FAF3, contains commodity flow data – in 14 

term of annual tons, ton-miles, and dollar value – on 43 different types of commodity groups. The FAF3 15 

database includes commodity flow information for 123 domestic and eight international origin-destination 16 

(OD) regions, the latter being used to account for the export and import of commodities. The database also 17 

provides commodity flow information by mode of transportation categories, namely, truck, rail, water, air 18 

(including air-truck), multiple modes and mail, pipeline, other and unknown, and the “no domestic mode” 19 

category used for import flows (1). This comprehensive database has the potential of addressing some of 20 

the data gaps facing many transportation agencies, and thus several methods have been developed to 21 

disaggregate FAF commodity flows to zonal structures with greater geographical detail.  22 

The methodology presented in this paper can be regarded as a second-stage procedure following 23 

the distribution of FAF flows to sub-FAF zonal levels. As will be discussed in the next section, the 24 

disaggregation of FAF flows is generally performed by computing or estimating expansion factors that are 25 

functions of variables related to the supply and demand of goods. In this paper it is proposed that the 26 

disaggregated commodity flows can then be split into mode-specific flows by using variables related to 27 

freight mode choice. A goal programming-based procedure is discussed to determine the mode splits of 28 

disaggregated FAF commodity flows. The objective of the goal-programming problem is to minimize the 29 

difference between sub-FAF mode flows and associated target mode flow values subject to sets of 30 

constraints that ensure consistency with the FAF mode flow data. Mode split models and analyst 31 

assumptions can be used to define target flows for each mode. 32 

The next section reviews previous efforts to disaggregate the FAF database. The third section 33 

presents the general outline of the procedure to determine the disaggregated flows mode splits. This is 34 

followed by a case study application of the proposed methodology in which a method to estimate aggregate 35 

mode split models using FAF3 data is discussed. The fourth section integrates previous disaggregates 36 

approaches with the goal-programming model. The last section discusses possible future research and 37 

applications of the proposed models. 38 

  39 

LITERATURE REVIEW 40 
  41 

One of FAF’s data products comprise sets of truck flows assigned to selected highway links. These 42 

estimated truck flows are the result of a procedure that disaggregates the FAF level OD flows to 43 

corresponding freight activity centers at the county or sub-county level. These activity centers include major 44 

manufacturing plants, truck-rail intermodal terminals, seaports, airports, and other truck-generating urban 45 

clusters. For each center a measure related to the production or consumption of freight is computed, and its 46 

division by the corresponding FAF total activity constitutes the share of the total flow allocated to the 47 

center. In FAF’s second version (FAF2), the freight activity measure for domestic flows was a function of 48 

the number of industrial establishments associated with each center (as reported in the 2005 County 49 

Business Patterns) and related annual vehicle-miles travelled (VMT, obtained from the 2002 Highway 50 

Performance Monitoring System). A similar procedure was followed to disaggregate international truck 51 
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freight flows, but the disaggregation was performed considering truck flow data at international 1 

crossings (2).  2 

  Viswanathan et al. (3) note that employing VMT in the computation of disaggregation factors has 3 

several drawbacks, including the fact that truck VMT measures capture non-freight related truck traffic 4 

(e.g., utility and service truck VMT), truck traffic that is merely passing by the activity center but not 5 

originating from or arriving at the center, or both. Therefore, Viswanathan et al. proposed creating 6 

commodity-specific disaggregation factors using the freight flows estimates of freight production and 7 

attraction models, akin to generation models in four-step commodity-based freight models. The 8 

commodity-specific production and attraction models were specified as functions of different types of 9 

employment and, for selected commodities, population. In contrast to the previous methodology, this 10 

methodology considers total OD flows, rather than the truck OD flows. Viswanathan et al. estimated the 11 

models using FAF domestic data as the dependent variable. The equations were then applied at the 12 

county and FAF zonal levels to estimate freight production and attraction. These estimates were used to 13 

compute proportional production and attraction weighting factors that map the total FAF OD flow to 14 

their corresponding sub-FAF OD zones. Opie et al. (4) also applied proportional weighting methods to 15 

disaggregate FAF data to county level zones, but in their study the production and attraction factors were 16 

computed by directly dividing the county level proxy variable (e.g., employment, population, VMT) by the 17 

related FAF level proxy variable.  In contrast, in the methodology proposed by Ruan and Lin (5) the 18 

disaggregation factors that map FAF OD flows to sub-FAF OD flows were jointly estimated with the 19 

freight production and attraction equations.  20 

As would be expected, a common theme in the reviewed studies is that the zones with higher values 21 

of the identified proxy production or consumption variables are allocated greater portions of the FAF 22 

OD flows. In the studies by Viswanathan et al. (3) and Ruan and Lin (5) this relationship was formalized 23 

with the estimation of freight production and consumption equations. In the next section, a procedure that 24 

splits the disaggregated FAF commodity flows into mode flows based on the given FAF mode data is 25 

presented. And, analogous to the use of freight production and attraction models used in the previously 26 

discussed disaggregation procedures, the proposed methodology allocates the modal flows according to 27 

mode split model estimates.    28 

 29 

MODE FLOW ALLOCATION PROCEDURE  30 

  31 

Consider the FAF level commodity flow 𝐹𝐼𝐽𝑐 for origin 𝐼, destination 𝐽, and commodity group 𝑐, and its 32 

disaggregated flows 𝑓𝑖𝑗𝑐, where 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽. The objective is to determine reasonable mode flow splits 33 

for each 𝑓𝑖𝑗𝑐 that are in agreement with the FAF modal information. Let 𝑚𝑖𝑗𝑐𝑘 represent the flow by mode 34 

𝑘 between zones 𝑖 and 𝑗, and 𝑀𝐼𝐽𝑐𝑘 represent the given FAF level mode flow between zones 𝐼 and 𝐽. For 35 

an OD, a mode flow allocation is in agreement with the FAF level information if it satisfies the following 36 

constraints:  37 

 38 

∑ ∑ 𝛼𝑖𝑗𝑐𝑘𝑚𝑖𝑗𝑐𝑘 = 𝑀𝐼𝐽𝑐𝑘

𝑗𝑖

 ∀ 𝑘 (1) 

∑ 𝑚𝑖𝑗𝑐𝑘 = 𝑓𝑖𝑗𝑐

𝑘

 ∀ 𝑖, 𝑗 (2) 

𝑚𝑖𝑗𝑐𝑘 ≥ 0 ∀ 𝑖, 𝑗, 𝑘 (3) 

 39 

The first constraint ensures that, for each mode 𝑘, the sum of all sub-FAF  𝑚𝑖𝑗𝑐𝑘 flows equals the 40 

parent 𝑀𝐼𝐽𝑐𝑘 flow. 𝛼𝑖𝑗𝑐𝑘 is a coefficient that indicates if there is access to mode 𝑘 between zones 𝑖 to 𝑗, an 41 

important consideration for the rail, water and pipeline modes.  The second constraint guarantees that the 42 

proposed mode flows 𝑚𝑖𝑗𝑐𝑘 add to the total commodity flow 𝑓𝑖𝑗𝑐𝑘. Given this set of constraints, a reasonable 43 

allocation of the FAF mode flows can be determined by solving the following goal-programming problem:  44 
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 1 

Minimize 𝑋 = ∑ ∑ ∑|𝑚𝑖𝑗𝑐𝑘 − 𝑚̂𝑖𝑗𝑐𝑘|

𝑘𝑗𝑖

  (4) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (1) − (3) 
  

 2 

The values 𝑚̂𝑖𝑗𝑐𝑘 are target (or goal) mode split values. Therefore, the solution to the goal programing 3 

problem are the mode flows 𝑚𝑖𝑗𝑐𝑘 that result in the least absolute deviation from the target values. Defining 4 

the target mode splits for each OD 𝑖𝑗 is a subjective task that depends, in part, on the analyst’s judgment. 5 

One approach to objectively define the target 𝑚̂𝑖𝑗𝑐𝑘 values is to multiply the  𝑓𝑖𝑗𝑐 flows by mode shares 6 

estimated via a mode split model. However, given that it is unlikely for a mode split model to consider all 7 

FAF modes (e.g., consider the other and unknown mode category), complementary assumptions might be 8 

required for ODs with modes out of the mode split model scope.  9 

Note that the objective function can be linearized by introducing variables that measure the positive 10 

(𝑃𝐷𝑖𝑗𝑐𝑘) or negative (𝑁𝐷𝑖𝑗𝑐𝑘) deviations between each 𝑚𝑖𝑗𝑐𝑘 and 𝑚̂𝑖𝑗𝑐𝑘. The problem is then reformulated 11 

as: 12 

 13 

Minimize 𝑌 = ∑ ∑ ∑(𝑃𝐷𝑖𝑗𝑐𝑘 + 𝑁𝐷𝑖𝑗𝑐𝑘)

𝑘𝑗𝑖

  (5) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (1) − (3) 𝑎𝑛𝑑 
 

  

𝑃𝐷𝑖𝑗𝑐𝑘 − 𝑁𝐷𝑖𝑗𝑐𝑘 = 𝑚𝑖𝑗𝑐𝑘 − 𝑚̂𝑖𝑗𝑐𝑘 ∀ 𝑖, 𝑗, 𝑘 (6) 

𝑃𝐷𝑖𝑗𝑐𝑘 ≥ 0, 𝑁𝐷𝑖𝑗𝑐𝑘 ≥ 0 ∀ 𝑖, 𝑗, 𝑘 (7) 

 14 

The presented objective function could easily be substituted by other formulations, such as a least squares 15 

objective function. However, considering that the goal-programming model must be solved for each FAF 16 

OD being disaggregated and for each commodity group of interest, a linear objective function is presented 17 

since it is one of the least computationally demanding formulations of the problem. Besides the selection 18 

of objective function, it should also be noted that another possible modification is formulating the problem 19 

in terms of mode shares (instead of mode flows).  20 

An alternative methodology to the one presented in this section is to perform the FAF flow 21 

disaggregation for each mode’s commodity flow OD matrix separately, instead of disaggregating the total 22 

commodity flow OD matrix and then allocating the flows to mode groups (the approach assumed in this 23 

study). The latter approach can be considered as conceptually more appealing as it extends the argument 24 

that data disaggregation procedures should be based on variables related to what is being disaggregated. In 25 

the case of disaggregating procedures for commodity flows, the variables of interest are those related to the 26 

demand and supply of goods. Analogously, variables associated with freight mode choice, such as modal 27 

service attributes and decision-maker characteristics, should be used for the mode allocation of 28 

disaggregated flows. Moreover, although disaggregating each mode’s commodity flow OD matrix 29 

separately has the benefit of circumventing the need for a commodity flow mode allocation procedure, the 30 

mode-specific disaggregation factors generated in this approach may undercut the rationale for using 31 

production and consumption variables to compute FAF disaggregation factors. This is because these mode-32 

specific factors would generally rely on the same zonal demand and supply variables (e.g., population, 33 

employment, farmland acres). Since each mode transports a different amount of goods, mode-specific 34 

disaggregation factors could imply that for each mode the explanatory variables result in different rates of 35 

consumption and production, which might not be reasonable. This observation is particularly meaningful 36 

when production and attraction models are estimated to develop disaggregation factors (e.g., see 3, 4). As 37 

an example, consider an analyst interested in modeling the zonal production and attraction (or consumption) 38 

of agricultural shipments using farmland acreage as a production variable and population as an attraction 39 
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variable. A zone’s population has a single demand level for agricultural products, not distinct demand levels 1 

by mode, as the consumption decisions of each person do not account for which modes were used to 2 

transport the products. Similarly, the farmland production levels at each zone do not vary by mode, but, in 3 

part, as a function of the aggregate demand. Therefore, if the analyst is interested in computing 4 

disaggregation factors that reflect the supply and demand dynamics associated with agricultural product 5 

markets, he/she should use total production and consumption of commodity flows instead of introducing 6 

data segmentations that, although convenient, may mask the causal connections between the flows and the 7 

selected explanatory variables.   8 

The next section presents an application of the proposed procedure. In addition, a method to 9 

estimate mode split models using FAF data is discussed, which might be useful for transportation agencies 10 

that have not developed or do not have access to freight mode split model. 11 

 12 

SAMPLE APPLICATION OF THE PROPOSED PROCEDURE  13 

 14 

The domestic commodity flow of manufactured metal products between the Los Angeles FAF zone and the 15 

Houston FAF zone was selected for the application of the allocation procedure. The definition of the 16 

manufactured metal products commodity group is taken from Ranaiefar et al. (6). This commodity group 17 

is composed of FAF3’s base metal, articles-based metals, and machinery groups. The FAF3 database for 18 

domestic movements reports 324.6 ktons flow of manufactured metal products from the Los Angeles FAF 19 

zone to the Houston FAF zone, of which 73.4 percent was transported by truck, 18.4 percent was transported 20 

by rail, 7.5 percent was transported by multiple modes, and 0.7 percent was transported by air-truck. The 21 

disaggregated zonal structure for California’s FAF zones presented by Ranaiefar et al. was used in this 22 

study. Figure 1 shows the disaggregated Los Angeles zone; the Houston FAF zone is not disaggregated as 23 

it is regarded as an external zone. The rail stations shown in Figure 1 represent those stations that are known 24 

to handle manufactured metal products flows according to the 2007 Surface Transportation Board Carload 25 

Waybill Sample (CW) (7). Additionally, Figure 1 presents the truck-rail intermodal facilities in the area.  26 

 27 

Disaggregating commodity flows 28 
 29 

The methodology proposed by Viswanathan et al. (3) was implemented to disaggregate the 324.6 ktons 30 

flow. This methodology was previously used by Cambridge Systematics to disaggregate California’s FAF2 31 

domestic flows (8). The freight production model estimated by Ranaiefar et al. (6) with FAF3 data was used 32 

for the disaggregation. This model is a function of the number of establishments in the fabricated metal 33 

product manufacturing industry (industry 332 in the North American Industry Classification System) and 34 

the manufacturing sector’s gross domestic product. Given that the destination zone is not disaggregated, 35 

the equation used to obtain the sub-FAF level flows using the proportional weighting method is: 36 

 37 

𝑓𝑖𝑗𝑐 = 𝐹𝐼𝐽𝑐 ×
𝑝𝑖𝑐

𝑝𝐼𝑐
  (11) 

 38 

For the OD under consideration, 𝐹𝐼𝐽𝑐 is the FAF level flow of 324.6 ktons. 𝑝𝐼𝑐 and  𝑝𝑖𝑐 are the total 39 

generation of manufactured metal products by the Los Angeles zone and the related sub-FAF origins, 40 

respectively, as predicted by the production models. Table 1 presents the computed 𝑓𝑖𝑗𝑐 flows for the 41 

example under consideration. 42 

 43 

Allocating mode flows 44 

 45 

As mentioned in the previous section, the targets of the goal-programming problem can be determined using 46 

mode flow estimates from mode split models. However, the same data availability challenges encountered 47 

with commodity flow data are encountered with freight mode choice data. Therefore, the estimation of an 48 
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aggregate mode split model using FAF3 data is discussed in this subsection. This procedure might be useful 1 

for transportation agencies that do not have access to a suitable mode choice model. Alternatively, agencies 2 

in this situation could also consider borrowing the parameters from another organization’s freight mode 3 

split model, and attempt to update the parameters based on available mode data (e.g., mode shares from 4 

FAF). 5 

The multivariate fractional regression (MFR) model (or fractional split model) was selected to 6 

estimate an aggregate mode split model for the manufactured metal products commodity group. The MFR 7 

model structure has been used in transportation studies to examine commodity flow distribution (9), time-8 

use allocation (10), highways’ VMT mix (11), and to estimate binomial freight mode split models (12). 9 

Model parameters in the MFR model are estimated using a quasi-likelihood estimation approach. The MFR 10 

model is used to estimate the expected values for fractional dependent variables. It is especially useful when 11 

a non-negligible number of observed fractions take boundary values of zero or one.  12 

In the current application the MFR model was estimated using California-related mode shares as 13 

the dependent variables. These mode shares were computed using FAF mode flows that had an origin or 14 

destination in California. Similar to the approach taken by Viswanathan et al. (3) and Ranaiefar et al. (6), 15 

the model was estimated using FAF level data, but applied at the sub-FAF geographical scale. Only three 16 

modes were included in the model: truck, rail, and multiple modes and mail. The multiple modes and mail 17 

category was incorporated in the model because of the importance of the truck-rail mode in mode shift 18 

analyses. Unfortunately, as its name indicates, in addition to truck-rail the multiple modes and mail category 19 

includes modes such as truck-water, rail-water, and, most importantly, mail and parcel. Therefore, 20 

assumptions are required to remove the non-truck-rail component of FAF’s multiple modes and category. 21 

For simplicity, in this study the 2007 Commodity Flow Survey (CFS) (13) was used to obtain commodity 22 

and OD specific factors to subtract the mail and parcel flows from FAF’s multiple modes and mail category, 23 

and the remaining flow was modeled as if it was truck-rail flow. The CFS information is presented for state 24 

level ODs, so the factors are state OD specific. For example, the CFS data for the manufactured metal 25 

products flows between California and Texas shows that mail and parcel represents 2 percent of the total 26 

flow. Given the stated assumptions, this implies that 6.6 ktons of the Los Angeles-Houston flow is 27 

transported by the mail and parcel mode, while the remaining 17.6 ktons in the multiple modes category is 28 

modeled on the basis of truck-rail modal attributes.  29 

A multinomial logit formulation was assumed for the MFR model as this functional form is often 30 

used in aggregate freight mode split modeling (14). Therefore, the target mode flows 𝑚̂𝑖𝑗𝑐𝑘 were computed 31 

as follows: 32 

 33 

𝑚̂𝑖𝑗𝑐𝑘 = 𝑓𝑖𝑗𝑐 ×
𝑒𝛾𝑖𝑗𝑐𝑘

∑ 𝑒𝛾𝑖𝑗𝑐𝑛
𝑛

  (12) 

 34 

𝛾𝑖𝑗𝑐𝑘 was specified as: 35 

 36 

𝛾𝑖𝑗𝑐𝑘 = 𝛽0𝑘 + 𝛽𝑐𝑜𝑠𝑡 log(𝑐𝑜𝑠𝑡𝑖𝑗𝑐𝑘) + 𝛽𝑡𝑖𝑚𝑒 log(𝑡𝑖𝑚𝑒𝑖𝑗𝑐𝑘)  (13) 

 37 

𝛽0𝑘 is the mode 𝑘 specific constant, 𝛽𝑐𝑜𝑠𝑡 is the coefficient of the cost attribute, and 𝛽𝑡𝑖𝑚𝑒 is the coefficient 38 

of the transit time attribute. This specification attempts to capture the effects of cost and transit time on 39 

freight mode shares, a standard practice in aggregate mode split models. Demo-economic variables (12), 40 

measures of commodity values and the magnitude of the mode flows themselves are examples of other 41 

explanatory variables that could be considered in the specification of 𝛾𝑖𝑗𝑐𝑘.  42 

The cost variable (𝑐𝑜𝑠𝑡𝑖𝑗𝑐𝑘) was computed by multiplying mode 𝑘’s shortest path distance between 43 

OD 𝑖𝑗 by that mode’s shipping freight rate ($/ton-mile). The equation for the rail and truck-rail modes was 44 

estimated using the California-related carload data in the CW. This equation is a function of distance, a 45 

dummy variable for intermodal shipments, location dummies (i.e., dummies that indicate from which state 46 

the shipment originated or arrived), and an interaction term between distance and the intermodal dummy. 47 
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The truck freight rate equation was estimated using data from a commercial freight rates database (15), and 1 

is a function of distance, average fuel price in the region of origin (16), and, again, location dummies. An 2 

additional freight rates model was estimated for short-haul truck movements using as explanatory variables 3 

fuel, dummies for origin zones, and lag rate variables of the second order. This short-haul truck rate equation 4 

was used to quantify the drayage cost associated with truck-rail cost; the drayage cost was added to the 5 

truck-rail rail-haul cost. The three freight rate equations were estimated using stepwise linear regression. 6 

Additional assumptions related to truck-rail terminal costs were made based on information presented by 7 

Resor and Blaze (17). The rate functions are not included in this paper due to space limitations, but are 8 

available upon request. Distanced-based functions were used to compute transit times for the truck, rail, 9 

and truck-rail modes. These functions are also available upon request. 10 

Table 2 presents the estimated parameters for the aggregate mode split mode. Truck-rail is selected 11 

as the reference so its alternative specific constant is set to zero. Table 1 shows the mode split model target 12 

values for the truck, rail and truck-rail modes, as well at the uniformly distributed target flows for the 13 

remaining modes. The targets for the remaining mode flows (the air and the subtracted mail and parcel 14 

mode flows) are the total 𝑓𝑖𝑗𝑐 flows multiplied by their corresponding aggregate mode share. Table 1 also 15 

presents two solutions to the optimization problem: the solution for the least absolute deviations objective 16 

function (𝐿1) and the solution for the least squares objective function (𝐿2). By design, both solutions add to 17 

the FAF3 mode flows, so the analyst must judge which objective function result is more reasonable, given 18 

available data and constraints. 19 

 Ortuzar and Willumsen note that aggregate mode split model results “may turn out to be very 20 

approximate” (14). Not surprisingly, the same could be observed with models estimated using the FAF3 21 

mode flow data, particularly given the size of FAF zones and the related levels of data aggregation. In the 22 

presented example, the last row in Table 1 shows that the target mode flows underestimate the FAF rail 23 

flow for the selected OD pair while overestimating the truck and truck-rail flows. In general, a reason for 24 

the relative inaccuracy of aggregate mode split models is that zonal level average cost and time measures 25 

fail to capture the influence of several important mode choice determinants, such as perceptions of mode 26 

travel time reliability, mode accessibility, and shipment characteristics. The development of additional 27 

proxy variables to account for these factors is a possible way to improve model accuracy.  28 

 29 

ENSURING CONSISTENCY BETWEEN DISAGGREGATED FLOWS AND FAF MODE DATA 30 
  31 

For some ODs the existence of feasible solutions to the goal-programming problems will depend on whether 32 

the FAF mode information was taken into account when disaggregating the total commodity flows. If the 33 

flows are disaggregated solely on the basis of the information provided by surrogate freight generation 34 

variables, the resulting flows may conflict with the FAF mode data. As an example, consider the FAF3 35 

animal feed commodity flow from California’s “remainder zone” to Hawaii’s “remainder zone”.  Activities 36 

associated with the production of animal feed (e.g., the harvest of hay) occur throughout all counties of 37 

California’s “remainder zone”, so a disaggregation based on this commodity’s freight production variables 38 

would generate flows originating from all the counties in this zone. However, the FAF modal information 39 

for this OD indicates that its animal feed flow is transported exclusively by the water mode (which does 40 

not include truck-water flows). Thus, the goal-programming problem for this OD would be infeasible as 41 

not all counties in California’s “remainder zone” have seaports, and consequently constraint set (1) could 42 

not be satisfied. Similar incongruities could arise for other ODs with rail, water or pipeline flows, as the 43 

facilities required to access these modes are not as ubiquitous as roadways. Therefore, a procedure is 44 

required to ensure that the total commodity flow disaggregation results, 𝑓𝑖𝑗𝑐, do not conflict with the FAF 45 

mode data. Define 𝑅𝐼𝐽 as the set of all modes with non-zero flow from 𝐼 to 𝐽 that have mode availability 46 

restrictions (i.e., modes that are not available in all 𝑖𝑗 pairs), and 𝑟 as a mode in that set. Furthermore, let 47 

𝛼𝑖𝑗𝑐𝑅 refer to an indicator variable that assumes the value of one when a mode in 𝑅 is available in OD 𝑖𝑗. 48 

Then, a set of disaggregated flows that are consistent with the FAF mode data can be determined by solving 49 

the following problem:  50 
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 1 

Minimize 𝑍 = ∑ ∑|𝑓𝑖𝑗𝑐 − 𝑓𝑖𝑗𝑐|

𝑗𝑖

  (14) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
 

  

∑ ∑ 𝛼𝑖𝑗𝑐𝑘𝑓𝑖𝑗𝑐 ≥ 𝑀𝐼𝐽𝑐𝑘

𝑗𝑖

 ∀ 𝑘 (15) 

∑ ∑ 𝛼𝑖𝑗𝑐𝑅𝑓𝑖𝑗𝑐 ≥

𝑗𝑖

∑ 𝑀𝐼𝐽𝑐𝑟

𝑟

  (16) 

𝑓𝑖𝑗𝑐 ≥ 0 ∀ 𝑖, 𝑗 (17) 

 2 

The target values 𝑓𝑖𝑗𝑐 can be obtained via one of the disaggregation procedures reviewed. The 𝛼𝑖𝑗𝑐𝑘 3 

indicators in constraint set (15) have the same interpretation as in constraint set (1). Constraints (15) ensure 4 

that, for each mode 𝑘, the sum of the allocated flows to zones with access to mode 𝑘 is greater than or equal 5 

to the corresponding FAF mode flow. However, since it is possible for modes in 𝑅 to be present in the same 6 

zones, the constraints (15) might allow for solutions in which the combined flow for all 𝑟 modes cannot be 7 

satisfied. Thus constraint (16) ensures that the combined flow of zones with modes in set 𝑅𝐼𝐽 is greater than 8 

or equal to the related FAF mode flow. If the 𝑓𝑖𝑗𝑐 targets satisfy constraints (15) and (16) no adjustment 9 

occurs (i.e., 𝑓𝑖𝑗𝑐 equals 𝑓𝑖𝑗𝑐 for all 𝑖𝑗 pairs). This is the case of the example presented in section 4. 10 

Conversely, in situations like the one presented in the animal feed example the modal information would 11 

completely override the disaggregation suggested by the production and attraction variables. Note that 12 

objective function (14) can be linearized, and it could also be substituted by formulations such as least 13 

squares deviations. Figure 2 presents a schematic of the integrated procedure suggested by the two 14 

optimization problems presented.  15 

 16 

POSSIBLE VALIDATION PROCEDURES FOR DISAGGREGATION AND MODE FLOW 17 

ALLOCATION RESULTS 18 

 19 
Testing the validity of disaggregated commodity flows and the related mode allocations at the sub-FAF 20 

level is primarily hindered by the same problem that motivates the use of FAF disaggregation and mode 21 

allocation procedures, namely, the dearth of commodity flow data at county and sub-county levels. FAF 22 

disaggregation studies (e.g., 3, 4) have attempted to validate their model results with county level data from 23 

Transearch, a proprietary database (21). These comparisons have shown non-trivial discrepancies between 24 

FAF and Transearch, in part because of definitional and conceptual differences between the two databases 25 

(3). An alternative approach to Transearch-based validations is to compare modeled traffic assignments 26 

resulting from the estimated sub-FAF mode flows with observed transportation network data. Ideally these 27 

network data would be available for all the modes and commodity types, but in reality it is unlikely that a 28 

transportation agency has this level of information. Nevertheless, typically transportation agencies do 29 

collect truck count data at major roadways, and these data could allow for the creation of cordon, screenline, 30 

or cutline counts that can be used for a partial validation of the commodity flow disaggregation and truck 31 

allocation results without requiring significant data collection efforts. This validation approach requires of 32 

multiple assumptions, such as percentage of empty trucks, percentage of service trucks, tonnage-to-truck 33 

conversion factors, and seasonality factors. Available literature, including FAF3 documentation (22), 34 

provides reference values that can be used by transportation agencies to make informed assumptions on 35 

unknown factors. Note that, unless the transportation agency can identify the types of commodities being 36 

moved by the observed trucks, the truck count validation approach would have to be performed on the basis 37 

of aggregated truck counts, not commodity-specific truck counts.  38 
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In this study neither Transearch nor extensive truck count data were available to perform validation 1 

tests. However, for illustrative purposes Southern California truck assignments flows, estimated in part by 2 

procedures presented in this study, were compared to cutline counts (i.e., corridor level counts) (Figure 3). 3 

The comparisons between cutline and modeled counts have been suggested as an aggregate level validation 4 

and reasonableness check for travel models (23). The cutlines used in this study were created with 2007 5 

truck count data from eight weight-in-motion (WIM) stations located at major highways in the region. 6 

FAF3-based county and sub-county flows for all commodities were borrowed from preliminary results of 7 

the California Statewide Freight Forecasting Model’s (CSFFM) commodity generation and distribution 8 

modules (6). These disaggregated commodity flows were allocated to truck, rail, truck-rail, and “remainder 9 

mode” categories using the least absolute deviation goal-programming model. The goal-programming 10 

problem targets were defined by FAF-based MFR mode split models and complementary assumptions 11 

similar to the ones presented in the sample application section. Factors based on the 2002 Vehicle Inventory 12 

and Use Survey were used to convert truck tonnage flows to truck vehicle flows, and to add empty trucks 13 

(24). Additionally, truck vehicle flows were converted from annual to daily flows utilizing the CSFFM 14 

truck seasonality model. The truck segments of truck-rail movements were associated to transshipment 15 

facilities using the CSFFM transshipment model. Finally, the truck flows were assigned to a model of 16 

California’s truck road network using a stochastic truck assignment model. The WIM stations data labeled 17 

each truck with the corresponding vehicle classification. Consequently, in this study the comparisons 18 

between the modeled and observed daily truck volumes could focus on the truck classes more likely to be 19 

carrying commodities in California (FHWA vehicle classes 8, 9, and 10). Table 3 reports the WIM and 20 

mode counts for each cutline, as well as the percent errors. Significant errors were observed for cutlines 2a, 21 

4a, and 4b. There could be multiple reasons for these errors, including model prediction errors (e.g., 22 

commodity flow distribution, mode allocation), incorrect assumptions (e.g., percent of empty trucks), and 23 

even data problems in FAF3. Given the limited extend of the cutlines (which is the result of limited 24 

availability of reliable truck counts), in this study it was not possible to identify with confidence what are 25 

the reasons for the discrepancies between the WIM and model counts. But this example demonstrates a 26 

relatively standard approach that can be used by transportation agencies to check if their FAF commodity 27 

flow disaggregation and mode allocation results are consistent with network observations.     28 

 29 

CLOSING REMARKS 30 
 31 

A goal-programming approach was presented for the mode allocation of disaggregated FAF commodity 32 

flows. The proposed method is intended as a second-step procedure following the distribution of FAF flows 33 

to sub-FAF zonal levels. A framework was suggested to connect previous total commodity flow 34 

disaggregation procedures with the optimization problems proposed in this paper. Note that the structure of 35 

the integrated procedure presented in Figure 2 is similar to the structure of the four-step commodity-based 36 

freight forecasting model, where commodity flow generation and mode split models are usually the first 37 

and third steps, respectively. This integrated framework could be expanded by introducing optimization 38 

problems to recalibrate the commodity flow disaggregation or mode allocation outputs based on traffic 39 

assignment results obtained from the mode flow allocations (the fourth step in the four-step model) and 40 

observed transportation network data. The formulation of these optimization problems could be the subject 41 

of future research. Additional research is also needed on the development of the FAF-based mode split 42 

models. For example, clustering procedures could be utilized to segment the commodity flow data (e.g., 43 

based on magnitude of the flow), and then separate mode split models could be estimated with each data 44 

group. Also, the utility of more complex model functional forms (e.g., nested logit) should be explored. 45 

For agencies that do not have access to freight mode choice models, a method was proposed to 46 

estimate aggregate mode split models using FAF data. In this paper these models were presented as a way 47 

to define target values for the goal-programming models. However, the mode split models could also be 48 

used by these agencies to perform aggregate level policy analysis, as the mode split model coefficients 49 

reflect to some degree the sensitivity of mode shares to changes in modal attributes, such as transit costs. A 50 

possible modeling approach is to develop incremental logit models by borrowing the parameters of the 51 
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estimated mode split models and using sub-FAF mode shares (or even the FAF mode shares) as the base 1 

shares. However, caution should be taken in the estimation, interpretation, and use of FAF-based aggregate 2 

mode split models since segments of the FAF data itself are the result of several intermediate models, 3 

especially for the CFS out-of-scope commodity flows (1, 13).   4 

 5 
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TABLE 1  Results for Disaggregation and Mode Flow Allocation Procedures  1 

Zones 𝒇𝒊𝒋𝒄 
Target Mode Flows 𝑳𝟏 Solution 𝑳𝟐 Solution 

T R TR RM T R TR RM T R TR RM 

603700 2.4 2.1 0.0 0.2 0.1 2.1 0.0 0.2 0.1 1.8 0.0 0.1 0.5 

603701 1.9 1.7 0.0 0.2 0.1 1.7 0.0 0.2 0.1 1.4 0.0 0.1 0.5 

603702 17.0 12.8 2.2 1.5 0.5 12.8 3.7 0.0 0.5 11.8 4.5 0.6 0.1 

603703 2.7 2.4 0.0 0.3 0.1 2.4 0.0 0.3 0.1 2.0 0.0 0.2 0.5 

603704 22.8 19.9 0.0 2.3 0.6 19.9 0.0 2.3 0.6 19.6 0.0 2.2 1.0 

603705 30.0 22.8 3.8 2.6 0.8 5.1 24.2 0.0 0.8 21.7 6.1 1.7 0.5 

603706 16.2 12.3 2.1 1.4 0.4 12.3 3.5 0.0 0.4 11.2 4.4 0.5 0.1 

603707 28.6 21.7 3.6 2.5 0.8 21.7 6.1 0.0 0.8 20.6 5.9 1.6 0.4 

603708 13.2 10.0 1.7 1.1 0.4 10.0 2.8 0.0 0.4 8.9 4.0 0.3 0.0 

603709 0.7 0.6 0.0 0.1 0.0 0.6 0.0 0.1 0.0 0.3 0.0 0.0 0.4 

603710 8.9 6.7 1.1 0.8 0.2 6.7 1.9 0.0 0.2 5.6 3.3 0.0 0.0 

603711 33.6 25.6 4.2 2.9 0.9 25.6 4.5 2.7 0.9 24.5 6.5 2.0 0.6 

605900 29.3 25.6 0.0 2.9 0.8 25.6 0.0 2.9 0.8 25.3 0.0 2.8 1.2 

605901 3.7 3.2 0.0 0.4 0.1 3.2 0.0 0.4 0.1 2.9 0.0 0.3 0.5 

605902 29.1 22.1 3.7 2.5 0.8 22.1 3.7 2.5 0.8 21.0 6.0 1.7 0.4 

605903 15.6 11.9 2.0 1.3 0.4 11.9 3.3 0.0 0.4 10.8 4.3 0.5 0.1 

606500 8.7 7.6 0.0 0.9 0.2 7.6 0.0 0.9 0.2 7.3 0.0 0.7 0.7 

606501 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

606502 1.7 1.5 0.0 0.2 0.0 1.5 0.0 0.2 0.0 1.2 0.0 0.1 0.5 

606503 13.0 9.9 1.6 1.1 0.4 9.9 1.6 1.1 0.4 8.8 3.9 0.2 0.0 

607100 18.2 13.9 2.3 1.6 0.5 13.9 2.3 1.6 0.5 12.8 4.6 0.7 0.1 

607101 2.3 1.8 0.3 0.2 0.1 1.8 0.5 0.0 0.1 0.2 2.1 0.0 0.0 

607102 13.9 10.6 1.7 1.2 0.4 10.6 1.7 1.2 0.4 9.5 4.0 0.3 0.0 

611100 11.1 9.6 0.0 1.1 0.3 9.6 0.0 1.1 0.3 9.3 0.0 1.0 0.7 

Total 324.6 256.1 30.3 29.3 8.8 238.4 59.8 17.6 8.8 238.4 59.8 17.6 8.8 

Notes: T=Truck, R=Rail, TR=Truck-Rail, RM=Remaining Modes. Zones with rail accessibility have bold identifications.  

           All flows in kton units. 
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TABLE 2  Estimated Parameters for the MFR Model 1 

Name Value Robust t-stat 

𝛽0,𝑡𝑟𝑢𝑐𝑘 1.980 6.60 

𝛽0,𝑟𝑎𝑖𝑙  0.517 0.79 

𝛽0,𝑡𝑟𝑢𝑐𝑘−𝑟𝑎𝑖𝑙  0 - 

𝛽𝑐𝑜𝑠𝑡  -0.413 -1.85 

𝛽𝑡𝑖𝑚𝑒  -0.947 -3.52 
 

Sample size :  253 

Null log-likelihood : -277.9 

Final log-likelihood : -125.3 

𝜌̅2 : 0.535 
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TABLE 3  Comparison between modeled and observed truck counts  1 

Cutlines Cutline  Volume Direction Description 
WIM 

Counts 

Model 

Counts 

Percent 

Error 

1 Leaving through east of Los Angeles County  10574 10966 3.7% 

2a Leaving San Bernardino County toward Arizona 5949 3841 -35% 

2b Entering San Bernardino County from Arizona 6190 6862 10% 

3 Leaving Orange County toward east direction 9878 9094 -7% 

4a Leaving Riverside County toward east and south directions 7348 10657 45% 

4b Entering Riverside County from east and south directions 5900 8172 38% 
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 1 
FIGURE 1  Disaggregated zonal structure for the Los Angeles FAF3 zone. 2 
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 1 
FIGURE 2  Framework to disaggregate commodity flows and allocate mode flows for a FAF OD. 2 
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 1 
FIGURE 3  Approximate location of the corridor cutlines. 2 


